Утомление при физических нагрузках

Утомление – это временное снижение работоспособности, вызванное глубокими биохимическими, функциональными, структурными сдвигами, возникающими в ходе выполнения физической работы, которое проявляется в субъективном ощущении усталости. В состоянии утомления человек не способен поддерживать требуемый уровень интенсивности и (или) качества (техники выполнения)  работы или вынужден отказаться от ее продолжения.

С биологической точки зрения утомление – это защитная реакция, предупреждающая нарастание физиологических изменений в организме, которые  могут стать опасными для здоровья или жизни.

Механизмы развития утомления многообразны и зависят в первую очередь от характера выполняемой работы, ее интенсивности и продолжительности, а также от уровня подготовленности спортсмена. Но в каждом конкретном случае могут выделяться ведущие механизмы утомления, приводящие к снижению работоспособности.

При выполнении разных упражнений причины утомления неодинаковы. Рассмотрение  основных причин утомления связано с двумя основными понятиями:

  1. Локализация утомления, т. е. выделение той ведущей системы (или систем), функциональные изменения в которой и определяют наступление состояния утомления.
  2. Механизмы утомления, т. е. те конкретные изменения в деятельности  ведущих функциональных систем, которые обусловливают развитие утомления.

Три основные системы где локализуется утомление

  1. регулирующие системы — центральная нервная система, вегетативная нервная система и гормонально-гуморальная система;
  2. система вегетативного обеспечения мышечной деятельности — системы дыхания, крови и кровообращения, образование энергетических субстратов в печени;
  3. исполнительная система — двигательный (периферический нервно-мышечный) аппарат.

Механизмы утомления

  • Развитие охранительного запредельного) торможения;
  • Нарушение функции вегетативных и регуляторных систем;
  • Исчерпание энергетических резервов и потеря жидкости;
  • Образование и накопление в организме лактата;
  • Микроповреждения мышц.

Развитие охранительного (запредельного) торможения

При возникновении в организме во время мышечной работы биохимических и функциональных сдвигов с различных рецепторов (хеморецепторов, осморецепторов, проприорецепторов и др.) в ЦНС по афферентным (чувствительным) нервам поступают соответствующие сигналы. При достижении значительной глубины этих сдвигов в головном мозге формируется охранительное торможение, распространяющееся на двигательные центры, иннервирующие скелетные мышцы. В результате в мотонейронах уменьшается выработка двигательных импульсов, что в итоге приводит к снижению физической работоспособности.

Субъективно охранительное торможение воспринимается как чувство усталости. Усталость снижается за счет эмоций, действия кофеина или природных адаптогенов. При действии седативных средств, в том числе препаратов брома охранительное торможение возникает раньше, что приводит к ограничению работоспособности.

Нарушение функции вегетативных и регуляторных систем

Утомление может быть связано с изменениями в деятельности вегетативной нервной системы и желез внутренней секреции. Роль, последних особенно велика при длительных упражнениях (А. А. Виру). Изменения в деятельности этих систем могут вести к нарушениям в регуляции вегетативных функций, энергетического обеспечения мышечной деятельности и т. д.

При выполнении особенно продолжительной физической работы, возможно снижение функции надпочечников. В результате уменьшается выделение в кровь таких гормонов как адреналина, кортикостероидов, вызавающих в организме сдвиги благоприятные для функционирования мышц.

Рис. 1. Гормоны в крови при нагрузке 65% от МПК

Гормоны в крови при нагрузке

Причиной развития утомления могут служить многие изменения, в деятельности, прежде всего дыхательной и сердечно-сосудистой систем, отвечающих за доставку кислорода и энергетических субстратов  к работающим мышцам, а также за удаление из них продуктов обмена. Главное следствие таких изменений — снижение кислородтранспортных возможностей организма работающего человека.

Снижение функциональной активности печени также способствует развитию утомления, поскольку во время мышечной работы  в печени  протекают такие важные процессы как гликогенез, бета–окисление жирных кислот, кетогенез, глюконеогенез, которые направлены на обеспечение мышц важнейшими источниками энергии: глюкозой и кетоновыми телами. Поэтому для спортивной практики используют гепатопротекторы для улучшение обменных процессов в печени.

Таблица 1. Внешние признаки утомления при физических напряжениях

Признаки Небольшое физическое утомление Значительное утомление (острое переутомление I степени) Резкое переутомление (острое переутомление II степени)
Дыхание Учащенное (до 22-26/мин на равнине и до 3-6/мин на подъеме) Учащенное (38-46/мин), поверхностное Резкое (более 50-60/мин), учащенное, через рот, пере­ходящее в отдельные вдохи, сменяющееся беспорядоч­ным дыханием
Движение Бодрая походка Неуверенный шаг, легкое покачива­ние, отставание на марше Резкие покачивания, появ­ление некоординированных движений, отказ от дальней­шего движения
Общий вид, ощущения Обычный Усталое выражение лица, нарушение осанки (сутулость, опущенные плечи), снижение интереса к окружающему Изможденное выражение лица, резкое нарушение осанки («вот-вот упадет»), апатия, жалобы на резкую слабость (до прострации), сильное сердцебиение, головная боль, жжение в груди, тошнота, рвота
Мимика Спокойная Напряженная Искаженная
Внимание Хорошее, безошибочное выполнение указаний Неточное вы­полнение команд, ошибки при пере­мене направления Замедленное, неправильное выполнение команд; воспринимается только громкая команда
Пульс 110—150 уд/мин 160—180 уд/мин 180-200 уд/мин и более

Исчерпание энергетических резервов и потеря жидкости

Как известно, выполнение физической работы сопровождается большими энергозатратами, и поэтому при мышечной деятельности происходит быстрое исчерпание энергетических субстратов. Под этим понимается та часть углеводов, жиров и аминокислот, которая может служить источником энергии при выполнении мышечной работы. Такими источиками энергии считается мышечный креатинфосфат, который может полностью использован при интенсивной мышечной работе, большая часть мышечного и печеночного гликогена, часть запасов жира, находящаяся в жировых депо, а также аминокислоты, которые начинают окисляться при очень продолжительных нагрузках. Энергетическим резервом можно считать поддержание в крови во время физической работы необходимого уровня глюкозы.

Рис. 2. Динамика АТФ, АДФ и креатинфосфата при работе

utomlenie_1

Рис. 3. Схема изменения содержания глюкозы в крови и гликогена в печени и скелетных мышцах во время длительной работы

utomlenie_2

Рис. 4. Расход гликогена в мышце при длительной нагрузке и субъективное ощущение тяжести нагрузки

Расходы гликогена

Рис. 5. Энергетическая емкость различных источников

utomlenie_3

Исчерпание энергетических субстратов, ведет к снижению выработки АТФ и снижению баланса АТФ/АДФ. Снижение этого показателя в нервной системе приводит к нарушению формирования и передачи нервных импульсов, в.т.ч. управляющих скелетной мускулатурой. Такое нарушение в функционировании НС является одним из механизмов развития охранительного торможения.

Снижение скорости синтеза АТФ в клетках скелетных мышц и миокарда нарушает сократительную функцию миофибрилл, следствием чего становится снижение мощности выполняемой работы.

Для поддержания энергетических ресурсов при выполнении продолжительной работы (лыжные гонки, марафон и др. шоссейные велогонки) организуется питание на дистанции.

Обильное  потоотделение во время длительных спортивных упражнений сопровождается значительной потерей хлоридов и изменением количественного соотношения ионов натрия, калия и кальция, хлора и фосфора в крови и тканях тела, что так же ведет к понижению работоспособности.

Утомление при длительной работе в условиях высокой температуры и высокой влажности окружающей среды может усиливаться в результате перегревания. Это нарушает  деятельность центральной нервной системы и может привести к тепловому удару (головная боль, помутнение сознания, а также в тяжелых случаях потеря его).

Фактором, способствующим развитию утомления, является и охлаждение организма.

Образование и накопление в организме лактата

Молочная кислота в наибольших количествах в организме образуется при выполнении нагрузок субмаксимальной мощности, что существенно влияет на функционирование мышечных клеток.

В условиях повышенной кислотности снижается сократительная способность белков, участвующих в мышечной деятельности. Снижается активность белков-ферментов АТФ-азная активность миозина и активность кальциевой АТФ-азы (кальциевый насос). Изменяются свойства мембранных белков, что приводит к повышению проницаемости биологических мембран.

Лактат приводит к набуханию мышечных клеток, вследствие поступления в них воды что снижает сократительные возможности мышц.

Предполагается, что лактат связывает часть ионов Са и тем самым ухудшает управление процессами сокращения и расслабления мышц, что особенно сказывается на скоростных свойствах мышц.

Рис. 6. Динамика лактата в зависимости от продолжительности Nmx

utomlenie_4

Таблица 2. Подключение различных механизмов энергообеспечения в зависимости от продолжительности нагрузки максимальной мощности

Продолжительность нагрузки Механизмы энергообеспечения Источники энергии Примечания
1-5 с Анаэробный алактатный (фосфатный) АТФ
6-8 с Анаэробный алактатный (фосфатный) АТФ + КрФ
9-45 с Анаэробный алактатный (фосфатный) + анаэробный лактатный (лактатный) АТФ, КрФ + гликоген Большая выработка лактата
45-120 с Анаэробный лактатный (лактатный) Гликоген По мере увеличения продолжительности нагрузки выработка лактата снижается
120-240 с Аэробный (кислородный) + анаэробный лактатный (лактатный) Гликоген
240-600 с Аэробный Гликоген + жирные кислоты Чем больше доля участия жирных кислот в энергообеспечении нагрузки, тем больше ее продолжительность

Микроповреждение мышц

Периферическое утомление может быть обусловлено не только метаболическими факторами, но и микроповреждениями мышечных волокон вследствие частых сильных сокращений.

Важно!!! Полагают, что такие микроповреждения приводят к послетренировочной  миалгии — «крипатуре».

Эксцентрические мышечные сокращения приводят к более выраженным микроповреждениям чем концентрические или изометрические.

Определенный вклад в микроповреждении мышц при длительной эксцентрической нагрузке (например бег на длинные дистанции) могут вносить другие факторы:

  • истощение ресурсов,
  • изменения транспорта кальция,
  • и образование активных форм кислорода,
  • перекисным окислением липидов (ПОЛ).

Незначительная часть О2, поступающего в организм из воздуха, превращается в активные формы, называемые свободными радикалами. Свободные радикалы, обладая высокой химической активностью, вызывают окисление белков, липидов и нуклеиновых кислот.

Чаще всего окислению подвергается, липидный слой биологических мембран. Такое окисление называется перекисным окислением липидов (ПОЛ). Предполагают, что к повышению скорости свободно-радикального окисления приводит ацидоз и стрессорные гормоны. Чрезмерная активация ПОЛ негативно влияет на мышечную деятельность.

Так повышаемая проницаемость мембран нервных волокон и саркоплазматического ретикулума миоцитов затрудняет передачу двигательных нервных импульсов и снижает сократительные способности мышцы.  Повреждение клеточных цистерн, содержащих ионы кальция, приводит к нарушению функции кальциевого насоса и ухудшения расслабляющих свойств мышц. При повреждении митохондральных мембран снижается эффективность тканевого дыхания.

Таблица 3. Характеристика количественных критериев ресинтеза АТФ

Критерии Пути ресинтеза АТФ
Креатинфосфатный Лактатный Аэробный
Максимальная мощность, кал/мин.кг 900-1100 750-850 350-450
Время развертывания 1-2 с 20-30 с 3-4 мин
Время поддержания максимальной мощности 8-10 минут 2-3 минут Десятки минут
Максимальная энергоемкость, кал/кг 150 250 Бесконечная

Таблица 4. Зоны относительной мощности работы

Показатель Зоны относительной мощности работы
Максимальная Субмаксимальная Большая Умеренная
Предельное время работы 20 с От 20 с до З-5 мин От 3-5 до 30 мин Больше 30 минут
Предельные энерготраты, Ккал/с 4 1.5-0.6 0.5-0.4 До 0.3
Суммарные знерготраты, Ккал 80 150-450 750-500 До 2-3 тысяч и более
Характер энергообеспечения Анаэробный, алактатный Анаэробно- аэробный Аэробно- анаэробный Аэробный
Потребление кислорода Незначитель­ная Возрастает к максимальной Максимальная Пропорциональ­но мощности
Вентиляция легких и кровообращение Незначитель­ная Возрастает к максимальной Максимальная Пропорциональ­но мощности
Отношение кислородного потребления к запросу <1/10 1/3 5/6 1/1
Кислородный долг Субмаксимальный, <8л Максимальный, 20-22 л Меньше, 12 л Меньше, 4 л
Предельная концентрация лактата крови мМоль/л До 12 До 20-25 10 До 2

Рис. 7. Механизмы энергообеспечения

utomlenie_6
utomlenie_7

Рис.8. Содержание гликогена в мышцах в течение тренировки

utomlenie_5

Рис. 9. Глюкоза крови: влияние тренировки и эффект спринта

Новый рисунок (4) Новый рисунок (5)
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии